The surface temperature of the moon experiences extreme variations, making it one of the harshest environments in the solar system. During lunar daylight, temperatures can soar to over 100 degrees Celsius, while in darkness, they can plummet to minus 100 degrees Celsius. These fluctuations are caused by the absence of an atmosphere, which on Earth moderates temperature extremes. Instead, the moon's surface directly absorbs and radiates heat depending on exposure to sunlight.
Lunar Temperature Variations Explained
According to data provided by NASA and analysed by experts, such as John Monnier, a professor of astronomy at the University of Michigan, the moon's soil, or regolith, significantly influences these temperature shifts. Regolith is a poor conductor of heat, causing rapid temperature changes on the surface while insulating the subsurface. As reported by Live Science, during Apollo missions, measurements indicated that temperatures beneath the surface were warmer by 40 to 45 kelvins compared to the lunar exterior.
Further research using NASA's Lunar Reconnaissance Orbiter (LRO), launched in 2009, revealed localised thermal anomalies. Findings in 2022 demonstrated that shaded areas within certain lunar pits maintained a consistent temperature of 17 degrees Celsius. These regions are considered promising for future human habitation.
The Moon's Poles and Extreme Conditions
The lunar poles present unique thermal environments due to the sun's low angle. Permanently shadowed craters, particularly at the south pole, may host temperatures as low as minus 248.15 degrees Celsius. These craters are shielded not only from direct sunlight but also from secondary heat sources, such as reflected solar radiation. Such locations could hold trapped ice particles, potentially vital for sustaining future lunar exploration missions.
Understanding the moon's thermal dynamics is essential for designing equipment capable of withstanding its conditions and planning potential settlements. Scientists and engineers continue to study these extremes to ensure that future missions can navigate and thrive in the lunar environment.